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Detecting Data and Schema Changes in Scientific Documents 

Igg Adiwijaya ‘, Terence Critchlow’, and Ron Musick” 
Rutgers University - CIMIC1 

and 
Lawrence Livermore National Laboratory (LLNL)* 

Abstract 

Data stored in a data. warehouse must be kept consistent and up-to-date with the underlying 
information sources. By providing the capability to identify, categorize and detect changes in 
these sources, only the modified da.ta needs to be transfered and entered into the warehouse. 
Another alternative, periodically reloading from scratch, is obviously inefficient. When the 
schema of an information source changes, all components that interact with. or make use of, 
data originating from that source must be upda.ted to conform to the new schema. In this paper, 
we present an approa.ch to detecting da,ta and schema changes in scientific documents. Scientific 
data is of particular interest because it is normally stored as semi-structured documents, and 
it, incurs frequent schema upda.tes. We address the change detection problem by detecting data 
and schema changes between two versions of the same semi-structured document. This paper 
presents a. graph representa.tion of semi-structured documents and their schema before describing 
our approach to detecting changes while parsing the document. It also discusses how analysis 
of a collection of schema cha.nges obtained from comparing several individual can be used to 
detect complex schema changes. 

1 Introduction 

Change detection is an important task for many applications, in particular for data warehouses. 
A data warehouses integrates data from heterogeneous, autonomous da.ta sources into a con- 
sistent; central repository. Since the wa.rehouse needs to be kept consistent and up-to-date, 
changes to the underlying sources must be periodically extracted and propagated to the ware- 
house. While this could be done by regularly refreshing the entire warehouse. a much better 
alternative is to detect and propagate only the changes. This alternative requires less computer 
resources and can be performed in significantly less time - an important considera,tion when 
warehouse down-time is limited. 

Before data can be loaded, the source schema. must be obtained and incorporated into the 
components supporting the warehouse, such a.s the wrapper and mediator [2]. U-hen the schema . 
evolves, these components must be modified as well. Currently, reflecting source schema changes 
in the warehouse requires obtaining the updated schema from the source and manually modifying 
the warehouse components to conform to it. While a manual approach to detecting schema 
changes may be acceptable in certain environments: it is too cumbersome and inefficient in 
situations where schema changes are frequent, such as scientific environment. An approach 
to automatically detecting schema changes, a,nd semi-automatically modifying the warehouse 
components accordingly, is needed. The more this can be automated, the more useful it will be 
when adding new sources to the warehouse as well. However, since new schemata are usual15 



provided in a free-form document, there are significant technical challenges to overcome if we 
are to reach any level of semi-automatic. 

III this paper, n-e present our approach to detecting both data and schema changes in scien- 
tific data sources. In this environment, data is usually provided as semi-st,ructured documents 
adhering to a well-defined, but representationally complex, schema. Therefore, we consider the 
problem of detecting change only within the context of semi-structured documents. To detect 
these changes, we compare two versions of the same document. The comparison utilizes any 
characteristics, rules and relationships existing in the documents, as described by the schema. 
11-e use a graph representation to describe the schema: and view documents as instances of this 
graph. Since a document contains data reflecting part of the schema (for example through ta.gs), 
n-e use it as an indication of schema changes. 

This paper makes the following contributions: 

1. The clefinition of schema graphs as a new way to model semi-structured documents, and 
to allow more complete characterization of data and schema changes. 

2. .A set of algorithms that use the schema graph for the identification and characterization 
of schema and data changes. 

3. The application of data analysis techniques to collections of document changes to identify 
complex schema modifications. 

4. The observation that, in this approach, changes may be detected white the document is 
being parsed - resulting in a much more efficient algorithm. 

The rest of this paper is organized as follows. We begin by briefly summarizing some of 
the traditional change detection algorithms. Then, in Section 3, we describe the cha.racteristics 
of scientific documents, with an emphasis on genomics databases, and discuss how we formally 
represent them. Section 4, presents our approach to data change detection, including a descrip- 
tion of the set possible data changes. Section 5 presents the set of possible schema changes and 
our approach to detecting them. Finally, we briefly present how this n-ork relates to an ongoing 
data warehousing project at LLNL. 

2 Related Work 

There have been several papers which detect data changes by comparing two versions of the 
same document. Initial work in this area focussed on changes in unstructured documents. 
Myers [9, 141 detects changes between strings using the longest common subsequence (LCS) [7] 
algorithm, and consider only insertion and deletion operations. \Vagner [12, 111 uses insertion, 
deletion and update operations to find the best sequence of operations that can transform one 
string into another. 

Labio [8] proposes an approach to detecting data changes in legacy systems, which are unable 
to support triggers and log-files. In this approach, data is dumped into a flat-file with each line 
representing a unique record, including a key. In order to detect changes, two versions of the 
data file are sorted based on the keys. Then, the old and new versions are compared based 
on key value comparisons. For large data sources, this approach requires estensive computer 
resources unless a windowing algorithm is used. Windowing makes the assumption that data 
having the same key are stored in approximately the same location. relative to other entries, in 
both files, thus eliminating the necessity for sorting. 

JIore recently, there have been several approaches to detecting data changes in semi-structured 
documents. These approaches differ primarily in how they view the underlying documents. 
Ball [5, 6] views semi-structured documents as containing sequence of sentences and “sentence- 
breaking” markups. A sentence is a non-recursive set of words and non-sentence-breaking 
markups. Sentence-breaking markups separate sentences from each other and from collections of 
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sentences. In comparing two documents, LCS algorithm is used to determine the t,otal number 
of matched words and markups within these sentences compared to the total length of the two 
sentences. With this approach, a sentence may neecl t.o be compared with all sentences in the 
other document. Even though changes to data can be detected, any possible cha.nges to schema 
cannot be detected. This approach has been implemented in a system called AT&T Internet 
Difference Engine (AIDE) [5, 61. 

-Alternatively, Chawathe [3] and Zhang [lo, 13, 1.51 view semi-structured documents as trees. 
Thus. the problem of change detection has been transformed t.o the problem of finding differences 
between trees. For any pair of leaf nodes, they either match or not, as determined by LCS. 
TKO internal nodes strictly match if all their children match, and partially match if at least 
$ome children ma,tch. To detect data changes, the two documents are first converted into their 
corresponding trees, then the matching nodes are identified. Once this has been done, all of 
the sequences of operations (insert, delete, update, more) that con\-ert the old tree to t,he new 
one are iclent,ifiecl, usually resulting in several options. The sequence that best represents the 
transformation is the one with the lowest total cost, based on the cost assigned to each operation. 
This approa.ch may be expensive since each node needs to be compared to all nodes in the other 
tree. and may match many of them, resulting in a large set of valid transformations. 

Our approach to detecting change differs from these efforts in several ways. First, it does 
not require t,ransforming one representation to another or finding the sequence of operations 
n-it11 minimum cost. Rather, we perform the tasks of node matching and comparison during the 
parsing of the documents. Second, none of the approaches previously mentioned detect changes 
to the unclerlying document schema, which our approach does. Finally, although we focus our 
discussion on scientific documents, our approach is applicable to semi-structured documents in 
weneral. The advantage of scientific documents is that they provide a more restrictive schema 0 
(i.e. fewer optional nodes) than most semi-structured documents. This restrictive schema allows 
us to identify a greater number of changes with less effort, as outlined in Section 5.3. 

3 Semi-structured scientific documents 

-4s described in Section 2, there are several ways one can view and model a semi-structured 
document. Our view is based on our experience with scientific documents in general, and 
genomic documents in particular. To provide a consistent and concrete framework for presenting 
our representation, we use a single exa.mple, the original Protein Data Bank (PDB) [l] data 
source shown in Figure 1. Before we discuss our model for scientific documents, we first present 
the characteristics and rules of the schema. 

.X schema for semi-structured scientific documents, s, consist of a set of data objects, 0, 
and a set of constraints, C, between the data ob.jects. A data object, o, is comprised of an 
identifier, ident( and an optional value, v&(o). For example, in Figure 1, data object oi with 
ident = COMPND has no value (i.e. vaZ(oi) = null) because there is no data associated 
lvith it. while object oj, with ident = MOLECULE, has a value of MYGLOBIN. In some 
cases: ordering among objects is significant, in others it is not. For example, the compound 
description must come after the title and before the source. However, it doesn’t matter if 
the molecule name comes before the mutation information, or after it. Each schema object is 
contained in exactly one of the following sets: 

1. hfa,ndatory objects. These objects must exist in a document. For example, in a valid PDB 
document there must be a data object oi with ident = HE.-lDER. 

2. Optional objects. These objects may or may not exist in a valid document. For example, 
oi where ident = REMARK4 does not have to exist for a PDB document to be valid. 

Objects participate in two types of relationships, mandatory alld optional. In mandatory 
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* 
HEADER OXYGEN TRANSPORT 1%DEC-97 lO.?M 
TITLE SPERK UHALE MYOGLOBIN H64.9 AQUOMET AT PH 9.0 
COMPND MOL ID: 1: 
COMPMD 2 ROiiECULE: MYOGLOBIN: 
COMPND 3 CHAIN: NULL; 
COBPND 4 ENGINEERED: SYNTHETIC GENE: 
COMPND 5 MUTATION: INS(MO), A64.b DlZZN 
SOURCE MOL ID: 1; 
SOURCE 2 ORhNISM SCIENTIFIC: PHYSETER CATODON; 
SOURCE 3 ORGANISN-CORMON: SPERM WHALE: 
SOURCE 4 TISSUE: ZKELET.~L mscLE: 
SOURCE 5 CELLULAR-LOCATION: CYTOPLASM; 
SOURCE 6 EXPRESSION SYSTEM: ESCHERICHIB COLI; 
SOURCE 7 EXPRESSION-SYSTEM STRAIN: PHAGE RESISTANT TBl; 
SOURCE 8 EXPRESSION~SYSTEM-CELLULAR LOCATION: CYTOPLASM; 
SOURCE 9 EXPRESSION SYSTEM-VECTOR TYPE: PLBSMID; - - - 
SOURCE 10 EXPRESSION SYSTEM PLASMID: PEMBL 19+ 
KEYWDS LIGAND BINDING, OXYGEN STORAGE, OXYGEN BINDING, HEME, 
KEYWDS 2 OXYGEN TRANSPORT 
EXPDTA X-RAY DIFFRICTION 
.9UTKOR R.D.SHITH,J.S.OLSON,G.N.PHILLIPS JUNIOR 
REVDAT 2 17-MAY-99 102M 1 JPNL HELIX 
REVDAT 1 0%IPR-98 1OZM 0 
JRNL AUTH R.D.SMITH 
JRNL TITL CORRELATIONS BETWEEN BOUND N-ALKYL ISOCYANIDE 
JRNL TITL 2 ORIENTATIONS AND PATHWAYS FOR LIGWD BINDING 
JRNL TITL 3 IN RECOMBINANT MYOGLOBINS 
JRNL REF THESIS, RICE 
JRNL REFN US ISSN 1047-8477 0806 
REMARK 1 
REMARK 2 
REMARK 2 RESOLUTION. 1.84 ANGSTROMS. 
REMARK 3 
REMARK 3 REFINEMENT. 
REMARK 3 PROGRAM : X-PLOR 3.851 
REMARK 3 1UTHORS : BRUNGER 
REMARK 3 

1 sl 

7 
41 '_ . 

Figure 1: Sample of a PDB document 

relationships, if the parent exists in the instance of the schema being considered, the child must 
also exist. For optional relationships, this existence dependency does not hold. Obviously, 
mandatory objects may only participate in mandatory relationships. However, optional objects 
may participate in either mandatory or optional relationships, which allows conditions of the 
form: oi does not need to exist an instance of the schema, however if it does, it must be followed 
by oj This is extremely useful in scientific documents, where attributes may be optional, but 
if they exist they are well structured. For example, in a PDB document, a molecule name 
(MOLECULE) exists if and only if there is a corresponding compound description (COMPND). 

Given these general characteristics of scientific documents, the rest of this section describes 
our representation of scientific documents and their schema. We view a schema as a directed 
acyclic graph (DAG), called a schema graph, and a document as an instance of it. Formally, we 
define a schema graph S as a DAG consisting of: 

l Sodes, n. 
Xodes correspond to the schema objects previously defined. There are three different types 
of nodes: regular, optional and stopping nodes. 

- Regular nodes, nrz must have an associated identifier. If an identifier is not explicitly 
specified in a document, a generated one will be supplied. Values are optional. For 
example, the identifier COMPND does not have a value while its children, such as 
MOLECULE, do. We use nf a.nd ident to denote a regular node i and its identifier 
respectively. A regular node is represented by a circle on the schema graph. 
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- Optional nodes, no. do not have identifiers or values. -in optional node must ha\-e 
at least two children. For a given document, exactly one of the children nodes of an 
optional node must be selected. On a schema gra.ph, an optional node is represented 
by a triangle. 

- Stopping nodes, II”. do not have identifiers or values. These nodes function as a no-op. 
Usually; one of the children of an optional node is a stopping node. A stopping node 
is represented by a circle with the letter S in it on the schema graph. 

l Directed edges, e. 
A clirected edge connects two nodes, ni and nj, where the edge origins at 71i, the parent. 
and ends at rrj, the child, and ?Li, nj E {nr,7~0,~~S}. For any ILL whose itnmedkte parent 
12~ is not an optional node, whenever nj exists in a document, ni must also exist. Such 
a relationship is denoted by ni -+ nj. There are two types of directed edges; ordered and 
unordered edges. 

- Ordered directed-edges, eO, indicate that the ordering of the children from left t.o right 
is significant and must be preserved. These edges are represented by a solid line on 
the schema graph. 

- Unordered directed-edges, e”, indicate that the ordering of the children from left to 
right is not critical. These edges are represented by dashed lines on the schema graph. 

Thus a schema graph is a tuple (N, E), where N is a set of nodes and E is a set of directed 
edges. Figure 2 depicts an example of a simple schema with the following properties and rules. 

Figure 2: An example of a graph representation of a simple schema 

nl - n14 are regular nodes and nl, na, n3, nq, ring, ng, nlo, 7213, n14 are required. n2 must appear 
before n3 and, if present, (716. n12) and n7 must appear between nz and n3. (ng,n13,n1a) and 
7~10 may appear in any order after 713. (n6, n12) and n11 can exist multiple times with different 
values. 

We represent a semi-structured document by mapping it to an instance of the schema graph. 
The resulting document graph represents only a subset of the schema graph, since the optional 
rules and properties specified in the schema may not be reflected in the document. Figure 3 (a) 
shows a document gra,ph conforming to the schema depicted by Figure 2. Beca.use a document 
graph urlrolls the loops in a schema graph, it is represented as a tree instead of a general graph 
structure. Figure 3 (b) depicts the tree schema, obtained by mapping the schema graph in 
Figure 2 to the document graph in Figure 3 (a). 

As can be seen from Figure 3 (a), a document gra.ph, denoted by td, consists of the following. 

l Nodes, n. n E {nr,no,ns}. 
l Edges, e. e E {e”,eLL}. 



Figure 3: The subset graph and tree for a document 

4 Changes to data 

To detect data changes, we use the schema to guide the comparison between different versions 
of the document. This requires extending the current parser to read the original document and 
store it internally. This effectively combines the schema graph and the original document graph 
to produce a value-added schema graph. Then the new document is read using the value-added 
schema. with the data values being compared during the pa.rsing. This allows us to detect and 
evaluate changes while the document is being loaded. Before we discuss detecting data changes 
in Section 4.2, we present our approach to producing the value-added schema and describe the 
types of changes we consider. Since a document graph is an instance of a schetna graph, mapping 
the document graph to the schema graph is straightforward: 

Parse the original document using the schema graph. 

For every object within the document, mark the corresponding node in the schema graph. 

For every value in the document, copy it to the corresponding node. 
Extend optional nodes as necessary to handle loops. 

To illustrate, suppose we would like to obtain the value added schema, sdj, where si is the 
schema given in Figure 2 and t,lj is the document graph shown in Figure 3 (a). Figure 4 presents 
sa diagrammatically, with shaded circles and solid lines corresponding to the document’s nodes 
a&l edges. 

4.1 Types of changes to data 

Sest: n-e briefly describe the types of data changes we consider in our approach: 

l Update Value: upd(val(ni)) occurs when an update is made to the value of a node ni. 
This cha.nge requires the same node to appear in both versions, and ni E {nr}. 

l Insert node: ins(ni) occurs when a node ni does not exist in the original document but 
exists in the newer one. 

6 



Figure 4: A schema having the knowledge of the content of a document 

l Delete node: cZe2(ni) occurs when an optional node ni exists in the original document 
but not in the newer one. If ni is a mandatory node, this change would indicate a schema 
change a.s discussed in the following section. 

l Reorder nodes: reorcler(ni) occurs when unordered If ordered nodes changed their 
position, this change would represent a schema change. 

l Move node: move(TLi) occurs when a node rzi is relocated upxxrd or downward on the 
graph. This is only possible when the node is a child of an optional node. 

4.2 Detecting changes to data 

Before discussing our approach to detecting changes, we first clarify what we mean by two nodes 
matching. Two nodes match if: 

1. the identifiers match, and 

2. the values are relatively equal, where this implies they match under the LCS algorithm. 

To detect data changes within a document, the value-added schema can be used to parse the 
document and return the updates. The following pseudo-code provides a high level overview of 
the algorithm we use to detect data changes. The remainder of this section describes, in detail, 
the various cases handled by this algorithm. 

S t sf! /* value added schema = schema + old d ocument */ 

D t d< */ new document */ 
While traversing S, parse D using S 

for each oi E D 
find oj, the corresponding node in S 
if oj is an ordered node then 
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detect changes on ordered nodes oj and o; 
if oi is an unordered node then 

detect changes on unordered nodes oj and oi 
if oi is a non-repeatable, optional node then 

detect changes on non-repeatable, optional nodes oj and o, 
if oi is a repeatable, optional node then 

detect changes on repeatable, optional nodes oj and oi 

the corresponding subtree sub-rooted at oj 

Ordered nodes 
Detecting changes in ordered nodes is straightforward since they must occur in a specified 
sequence. Let d$’ denote the kth version of document j. Given ?, dj, d> (k < I), to detect 
changes to ordered nodes in ai: 

Traverse sib while parsing di 
1 

For every ordered node n,. E s& and its corresponding node 11~~~ E (I[i 

If val(n,) does not match i*al(n,,), then return upd(unl(7~,,.)) 

Unordered nodes 
Given si, di, (1: (k < Z), to detect changes to unordered nodes in dl: 

Traverse .s:~! while parsing d$. 
1 

For each visited, mandatory unorclered node n[, on sjrk, fetch the corresponding object, 
, 

R,,,, in di. 

Fetch 71wc, the children of IL,, 

Compare each of R~,‘s children with 71 Wc using only the identifier to find the corre- 
sponding node. 
Record the order of the node and the object. 
Compare the values of the matching node. 
If the orders are different, return reorder(no.) 
If the values of matching nodes are different, add an upd(n,,). 

Non-repeatable, optional nodes 
Given a schema graph si, a non-repeatable, optional node, nk, is a node such that r~k’s ancestor 
7q E no (i.e. it is optional) and Vn, 1 n,, is a descendent of nl and -4 an edge from n,,L to n/ 
(i.e. it is not in a loop). Given si,d;,d:(lc < 1), to detect changes to non-repeatable, optional 
nodes: 

Traverse s$ and parse cl;. 
* 

For each visited, non-repeatable, optional node n, 

Identify the corresponding optional node, n, in di. 
If ident = ident and vaZ(n,) # &(n,,) then return upd(nw) 
If ident # ident(n,,) then return deZ(n,,), ins(71,,,) 

If nw = nuZ1 then return del(n,). 
If n, = null and n, # null then return ins(n,). 



Repeatable, optional nodes 
Given a schema graph s’, a non-repeatable optional node, 7&k, is a node such that nk’s ancestor 
111 E 11 ’ and iin,,, 1 n,,, is a descendent of nl and 3 an edge from n,,, to nl. For example, Figure 
5 (a) depicts an si showing an optional node having a repea.table child ng. Figure 5 (b) depict,s 
a portion of s6+ lvith repeated nodes, and Figure 5 (b) depicts the tree’representation of di. To 

detect cha.nges’to repeatable nodes: we use two buckets as temporary stora.ge during the change 
detection process: b: is associated with “5, 65 is associated with d:. 

(a) (b) 

Figure 5: Detecting changes to repeatable nodes 

Given si, d$‘, d$ (k < 1), to detect changes to repeatable, optional nodes: 

Traverse s’ik and parse d;. 
, 

For each node n,n in di, compare each n, child, nnmC, with the child, nSC, of the corre- 
sponding n, in sd!. 

3 
If n mc = nsC, return upd(n,,,,). 

If hLc # n,, 
compare n,,, with bf sequentially. 
If a match is found, return ‘llpd(n,,),nloVe(n,,c) and remove n,,,‘s matching 
from b:. if a match is not found, append n,, to bi. 

compare n,ns with bi sequentially. 
If a match is found, return upd(nms),moue(n,,,,) and remove n.nLs’s matching 
from b:. 

if a match is not found, append nmS to bt. 

return del(n.,) for each nu E bi and return ins(n,) from each 71,, E b:. 
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5 Changes to schema 

To detect changes to schema, we need a document that conforms to the new schema and the 
current schema graph. Our approach is based on the observation that some, if not all, of the 
schema cha,nges will be reflected in future documents. In particular. jvhen the schema changes, 
some of the documents 141 fail to conform to the existing schema. Xs a result, changes that 
xould normally be considered errors, such as an unrecognized identifier, are treated as schema 
modifications instead. In order to obtain the best reflection possible of the scope of schema 
changes: parsing should continue as much as possible after a schema change has been identified. 

5.1 Types of schema changes 

Before ne describe our approach to detecting schema changes; 11-e present the different categories 
schema changes we consider in our approach: 

1. Reordering a node. For a given node, if the ordering of its children is significant, a 
reorder would occur if it is cha,nged. For example, in future PDB documents, the ordering 
between COMPND and SOURCE may be sGtched. 1Ye use reorclerS() to denote this 
operation. 

2. Inserting a new node. We use insS() to denote this operation. An insert is considered 
to have taken place when an unrecognized identifier is found. 

3. Deleting a node. For a regular node, a deletion is indicated by a document not containing 
a required child node. However, this may also indicate that it has been converted into an 
optional node. These options can only be differentiated by evaluating a set of documents. 
Similarly, the deletion of an optional node requires an analysis of multiple documents. 
Our approach to this analysis is briefly outlined in Section 5.3. We use (EelSO to denote a 
deletion of a node. 

4. Updating a node. If an unrecognized identifier matches a previously existing child of the 
same parent, we consider that to be an update of the existing identifier. We use vpdS() 
to denote an upda.te of a node on the schema. 

5. Adding/deleting a repeatable edge. This schema change is only applicable to a. regular 
node whose ancestor is an optional node. 4n addition of a repeatable edge can be detected 
by evaluating a single document n-here a node which previously never appeared multiple 
times now does The appearance of multiple nodes that n-ere previously mutually exclusive 
may also indicate an addition of a repeatable edge. For example. given the schema example 
as depicted by Figure 2 the appearance of nT,nG,nlg in a nex document would signal the 
insertion of a repeatable edge on 127. Detecting the removal of a repeatable edge is more 
difficult task, and is described in section 5.3. We use repents0 and nonrepeatS() to 
denote an addition and a deletion of a repeatable edge respectively. 

5.2 Detecting changes to schema 

For a node in the schema graph and an object in the document to exactly match, their identifier 
must be identical. Two nodes having different identifier partially match if more tha,n some 
specified percentage of their children match, based on a sequentia.1 matching among the children 
in \vhich order is not considered. The number of children that must match in order for the 
parents to match can be adjusted depending on the level of accuracy desired. 

For the rema.inder of this section, Iv-e a.ssume that the document we are parsing conforms 
to a nelver version of the schema than the parser. We first present the general algorithm for 
detecting schema changes, then describe in detail the approach for each type of nodes. Section 
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3.3 discusses how we infer complex schema cha.nges, taking into consideration the possibility of 
errors. by analyzing schema changes from a collection of incomplete document comparisons. 

This algorithm traverses the schema graph identifying schema changes while parsing a doc- 
IIIlleIlT : 

S t root node of the schema graph 
D c the beginning or root object of the document 
while 5’ = 0 and D = 0 do 

cl+-- POP(D) 
Y t pop(S) 
if s is a regular node then 

detect schema changes between cl’s children and s’s children 
for any matching d’s children, nd, with the corressponding children , ns of s do 

JNL&(PI,~, D) and ~ush(n~, S) 
ifs is an optional node then 

detect schema changes between d’s children n,d and sls children 
if nd matches a child-node, ns, of s then 

push(nd, D) and push(ns, S) 
if 71d is a repea.table node then 
ndz t location in the document immediately following II,/ 

push(n,~,, D) and push(~t,, S) 

S and D are list of nodes. push(y, L) and pop(L) have the standard FIFO queue semantics. 
\\%en detecting schema changes, this algorithm heavily uses the schema associated with the 

document. The more rigid the schema (i.e. the fewer optional nodes), the more changes we can 
detect. Thus while this approach will work for semi-structured documents in general, it is most 
useful when applied to documents that are well constrained - such as scientific documents. For 
example, in PDB documents, the beginning and ending of a major identifier, such as SOURCE 
is easil\- identified by its tag along the left column. Additionally, characters such as { :;.,} and 
“tab” can be used to identify the beginning/ending of a data object or grouping of data objects. 

Children of a regular node 
Given node nk from schema graph si and ‘the matching object 121 within a document d,,, where 
both ok and 711 are regular nodes, to detect schema changes to children of 711;: 

Traverse the sub-graph rooted at nk creating a list, Ck, of HE’S chidren in order from 
left-to-right. 

Identify 2.11 chilren of n/, Cl, by parsing & starting from nl until an identifier that matches 
one of the nk’s siblings is encountered. 

Sequentially compare Ck and Cl to detect changes. 

For every n, E Ck that strictly matches an identifier, n,,. E 6’1 

if order of nk’s children on si is significant, then reorderS(n.,) is returned. 
For every unmatched identifier in n, E Ck and n, E Cl 

If n, partially matches 71,, zqdS(n,) is returned. 
For every unmatched n[,, insS(n,) is returned. 
For every unmatched 71w, delS(n,) is returned. 

Children of an optional node 
Given an optional node, nk, on schema graph si, and the matching object, n/, within a document 
cl,,, , to detect schema changes to children of nk: 
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Traverse the sub-graph rooted at 7tk identifying all children of 7tk, Ck. 

Fetch the next identifier, II,,., immediately follo\ving 721 in d,,, . 

If n,, macthes one of 7hkfs sibling nodes, *n,‘s children is a stopping node and no schema 
change is detected. 
If n, n&&es one of 71k’s children, n,, 

Fetch the next identifier from cl,,, . If it matches one of 71k’s children, nl, is repeat- 
able. 
If 71,,, is non-repeatable in si and n, is a repeatable, then return repeatS( 
If n,,, does not match any of nk’s children, return insS(n,,). 
If n,, is a repeatable node that has been changed into a non-repeatable node, the 
approach described in Section 5.3 is used. 

5.3 Inferring schema changes 

A document conforming to a new version of a schema may not reflect all changes between the 
original schema and the new schema because the document is only an instance of the schema. 
Thus, all schema changes cannot be detected by evaluating a single document. In order to detect 
changes that span multiple documents, we envision applying data mining techniques to a large 
collection of comparison results. &Te believe that by using a large number of comparisons, we 
will be able to identify patterns reflecting the new schema. 

The larger the number of documents considered, the greater our confidence in the resulting 
patterns. For example, assume that we have n documents tha.t conform to schema si+l. By 
comparing these documents against the schema si, n-e create a set of schema changes for each 
document Ch where Ch = {ch d, ? chd2, . . . . chd” }. We can then use statistical analysis to answer 
the following problems. 

1. Determining when to delete a child of an optional no&. 
If nl is the child of an optional node we are considering for deletion and if Ch indicates 
that data objects corresponding to nl do not appear in any of the documents, we may 
deduce with a, level of confidence proportional to 11, that n/ has been deleted. 

2. Identifying unintended errors. 
An error may be reflected by an insS(), deZS() or rlpd() on a node. In Ch, an unintended 
schema change is likely to take place in only one or two documents. We could assert that 
schema changes occurring only in a very small percentage of documents are errors and 
ignore them. Because this could also ignore valicl schema changes, we assume that the 
author makes only relatively minor errors. 

We believe mining schema changes is a feasible approach to identifying complex modifi- 
cations. However, human intervention may be required to resolve some conflicts. The main 
objective of this effort is to automatically detect as many schema changes as possible, so man- 
ual reconstruction of the entire new schema from scratch is no longer necessary. 

6 Implement at ion within DataFoundry 

We are currently implementing our approach within the context of the DataFoundry [4] project 
at Lawrence Livermore National Laboratory (LLNL). DataFoundry is a data warehouse that in- 
tegrates scientific data from several distributed, autonomous, heterogeneous information sources. 
DataFoundry responds to LLNL scientists’ need for a urliform and semantically consistent inter- 
face to a variety of data. Figure 6 provides a simplified view of the DataFoundry architecture. 
The wrapper extracts scientific documents from the underlying information sources, such as 
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PDB, parses them, and passes the data to the mediator. The mediator transforms it into the 
appropriate format, and propagates it to the warehouse. Because DataFoundry is focused on 
scientific data in general, and genomic data in particular, it faces the problems of detecting data 
and schema changes addressed in this paper. Typically, genomic information sources provide 
their schema as a free-formatted document, requiring manual identification of the locations and 
types of schema changes made to a new revision. Once these changes are identified, the associ- 
ated wrapper component is manually updated to conform to the new schema. This has proven 
to be costly and time consuming. This work will extend DataFoundry by providing: 

1. the wrapper with the capability to detect data and schema changes in a scientific document, 
a11d 

2. a mechanism to semi-automatically define the new schema based on the older version, and 
to automatically incorporate the new schema into the wrapper. 

To achieve the first objective, we are incorporating our change detection approach into the 
wrappers. We have developed a module that periodically detects and retrieves new documents 
from the information sources. These documents are then passed on to a set of C/C++ a.nd 
Lex&Yacc programs to be parsed. We are currently extending these programs to utilize the 
value-added schema to detect data and schema changes. We anticipate completing our imple- 
mentation and presenting detailed result in the final version of this paper. 

To achieve the second objective, we propose developing a change management architecture 
for DataFoundry, shown in Figure 7. This architecture extends the current DataFoundry archi- 
tecture by adding the schema mining, schema storage and generator components. 

In this architecture, when a cha.nge is detected, the wrapper retrieves all newly created 
or modified documents from the information source. Each extracted document is compared 
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with its older version, stored locally by the management system’. Data changes are extracted 
and propagated into DataFoundry while schema changes are stored. By comparing several 
documents, and accumulating the schema changes, we obtain a better view of the new schema. 
The schema mining component then analyzes the entire collection of schema changes and define 
a new schema based on the previous version. In doing so, human intervention may be required 
to resolve conflicts arising from incomplete or inconsistent data. The new schema is adcled to 
the schema storage, and is used by the generator to define a wrapper that conforms to it. 

7 Conclusion 

To update the content of a scientific data warehouse, changes to documents stored at the under- 
lying information sources need to be extracted and incorporated into the warehouse. Moreover, 
if the schema of an underlying information source changes, the corresponding wrappers must be 
updated to conform to the changes. Thus, the ability to detect both data and schema changes 
is required in this environment. 

In this paper we have highlighted the importance of detecting changes to both data and 
schem+ and proposed a formal representation of semi-structured, scientific documents a.nd their 
schema. We have addressed the problem of detecting data and schema changes by comparing 
the new document, with its implicit schema information, to the older version, represented as a 
G?lue-added schema graph. We have presented the types of data and schema changes that may 
occur in scientific documents, and proposed detection algorithms accordingly. Our approach 
avoids performing extensive data matching between two versions of documents by performing 

‘In order to minimize storage requirement, only the newest version of each document is stored. Existing compres- 
sion techniques can be used to further reduce the storage requirement 
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change detection during the parsing of the documents. and by using the schema to guide the 
process. In order to minimize manual intervention for detecting schema changes and modifying 
existing wrappers, we have proposed a general purpose archit,ecture and necessary components 
for an automated change-management system. We a.re currently in the process of implementing 
this architecture within the context of the DataFoundry project at LLNL. 
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